Diffusion across a porous plug: the effect of a third component (adapted from BSL). When two gases A and B are forced to diffuse through a third gas C, there is a tendency of A and B to separate because of the difference in their diffusivities in gas C. This phenomenon could possibly be used for isotope separation. Consider a “diffusion tube” of diameter d and length L packed with some non-reacting material such as glass wool. One end of the tube, z = 0, the feed side, is maintained at mole fractions of xAf and xBf. The other end, the product end, z = L, is maintained at xAp and xBp. Your task is to model the degree of separation that can be achieved in this system and to find the fluxes of the various species across the tube. (a) Set up the model to describe the system. (b) Express the model in terms of dimensionless quantities. (c) Show or discuss a procedure to solve the model. Set up computations in MATLAB.