# Blog Archives

## set up and solve a case-study example of the light-intensity distribution in a photochemical reactor.

Photochemical reactor modeling: a case-study problem. Although radiation is important in heat transfer, an analogous model can be used in the design of photochemical reactors. The modeling of these reactors requires that the radiation intensity be tracked in the reactor as a function of position and coupled to the kinetics of chemical reaction. The RTE becomes an important sub-model for such reactors. The book by Cassano and Alfabo (1991) is the most valuable source for photochemical reactor modeling. Study this paper or related papers, and set up and solve a case-study example of the light-intensity distribution in a photochemical reactor.

## Write a critique on this technique of secondary-emission measurement.

Secondary-emission measurement: a case-study problem. An indirect way of measuring of secondary emission from ponds or large bodies of water used in waste treatment is to measure the concentration and velocity over the surface. The data can then be fitted to a model of the type presented in Section 20.1.4. In a typical experiment benzene concentration and velocity were measured at various locations above the water surface and the data are as follows.

Fit the data to the boundary-layer model and evaluate the rate of emission from the surface. D for benzene is 0.077 cm2/s in air. Usually the data are measured at about six points above the surface, but we use only two points in order to simplify the calculations. Write a critique on this technique of….

## set up a mass transfer model and evaluate the variation of the local mass transfer coefficient at various locations in the plate.

Chemical vapor deposition (CVD) on an inclined susceptor: a case-study problem. An important application of convective mass transfer theory is in CVD processes employed to coat surfaces with thin films of metals or semi-conductors. In fact, this turns out to be an example of simultaneous heat and mass transfer with chemical reaction. A flat plate is used as a susceptor to deposit a material for a semi-conductor application. The inclination of the plate is θ to the horizontal. The flow will then be governed by the Falkner–Skan equation described in Section 15.6. Your goal is to set up a mass transfer model and evaluate the variation of the local mass transfer coefficient at various locations in the plate. Usually a constant or nearly constant boundary-layer thickness is preferable…..

## write a comprehensive MATLAB simulation code.

A model for a hemodialyser with simulation of the patient–artificial-kidney system: a case-study problem. A useful case study is the paper by Ramachandran and Mashelkar (1980), where a mesoscopic model with axial dispersion was used for the blood side and plug flow was used for the dialysate side. The solution was analytic and was then combined with a compartmental model to simulate the patient–artificial-kidney system. Your goal in this case study is to review the paper and write a comprehensive MATLAB simulation code.

The second task is to do a parametric sensitivity analysis and then suggest how the model can be used to optimize conditions to get the desired end results. This case study combines several key modeling concepts discussed in this text and may be viewed as….

## examine how the dispersion coefficient changes with the adsorption equilibrium constant.

A model for chromatographic separation: a case-study problem. An important application of Taylor dispersion is in chromatography. Here pulses of a mixture of solutes are introduced into one end of a packed-bed reactor containing an adsorbent and washed through the bed with a solvent. Since different species adsorb and diffuse at different rates, we obtain a separation. The axial dispersion will often interfere in the separation (it causes a pulse broadening). Your goal is to set up a model for chromatographic processes wherein you should include the adsorption on the solids as an additional term. You can examine how the dispersion coefficient changes with the adsorption equilibrium constant.